Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioscience ; 74(4): 253-268, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38720908

RESUMEN

Managing coastal wetlands is one of the most promising activities to reduce atmospheric greenhouse gases, and it also contributes to meeting the United Nations Sustainable Development Goals. One of the options is through blue carbon projects, in which mangroves, saltmarshes, and seagrass are managed to increase carbon sequestration and reduce greenhouse gas emissions. However, other tidal wetlands align with the characteristics of blue carbon. These wetlands are called tidal freshwater wetlands in the United States, supratidal wetlands in Australia, transitional forests in Southeast Asia, and estuarine forests in South Africa. They have similar or larger potential for atmospheric carbon sequestration and emission reductions than the currently considered blue carbon ecosystems and have been highly exploited. In the present article, we suggest that all wetlands directly or indirectly influenced by tides should be considered blue carbon. Their protection and restoration through carbon offsets could reduce emissions while providing multiple cobenefits, including biodiversity.

2.
New Phytol ; 242(1): 49-60, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37984803

RESUMEN

Tree stem methane emissions are important components of lowland forest methane budgets. The potential for species-specific behaviour among co-occurring lowland trees with contrasting bark characteristics has not been investigated. We compare bark-mediated methane transport in two common lowland species of contrasting bark characteristics (Melaleuca quinquenervia featuring spongy/layered bark with longitudinally continuous airspaces and Casuarina glauca featuring hard/dense common bark) through several manipulative experiments. First, the progressive cutting through M. quinquenervia bark layers caused exponential increases in methane fluxes (c. 3 orders of magnitude); however, sapwood-only fluxes were lower, suggesting that upward/axial methane transport occurs between bark layers. Second, concentrated methane pulse-injections into exposed M. quinquenervia bark, revealed rapid axial methane transport rates (1.42 mm s-1 ), which were further supported through laboratory-simulated experiments (1.41 mm s-1 ). Laboratory-simulated radial CH4 diffusion rates (through bark) were c. 20-times slower. Finally, girdling M. quinquenervia stems caused a near-instantaneous decrease in methane flux immediately above the cut. By contrast, girdling C. glauca displayed persistent, though diminished, methane fluxes. Overall, the experiments revealed evidence for rapid 'between-bark' methane transport independent from the transpiration stream in M. quinquenervia, which facilitates diffusive axial transport from the rhizosphere and/or sapwood sources. This contrasts with the slower, radial 'through-bark' diffusive-dominated gas transportation in C. glauca.


Asunto(s)
Melaleuca , Árboles , Metano , Corteza de la Planta , Bosques , Dióxido de Carbono , Suelo
3.
Environ Microbiol ; 26(1): e16558, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38115223

RESUMEN

Subterranean estuaries (STEs) are important coastal biogeochemical reactors facilitating unique niches for microbial communities. A common approach in determining STE greenhouse gas and nutrient fluxes is to use terrestrial endmembers, not accounting for microbially mediated transformations throughout the STE. As such, the microbial ecology and spatial distribution of specialists that cycle compounds in STEs remain largely underexplored. In this study, we applied 16S rRNA amplicon sequencing with paired biogeochemical characterisations to spatially evaluate microbial communities transforming greenhouse gases and nutrients in an STE. We show that methanogens are most prevalent at the terrestrial end (up to 2.81% relative abundance) concomitant to the highest porewater methane, carbon dioxide and dissolved organic carbon concentrations (0.41 ± 0.02 µM, 273.31 ± 6.05 µM and 0.51 ± 0.02 mM, respectively). Lower ammonium concentrations corresponded with abundant nitrifying and ammonia-oxidising prokaryotes in the mixing zone (up to 11.65% relative abundance). Methane, ammonium and dissolved organic carbon concentrations all decreased by >50% from the terrestrial to the oceanic end of the 15 m transect. This study highlights the STE's hidden microbiome zonation, as well as the importance of accounting for microbial transformations mitigating nutrient and greenhouse gas fluxes to the coastal ecosystems.


Asunto(s)
Compuestos de Amonio , Gases de Efecto Invernadero , Microbiota , Estuarios , Metano , Materia Orgánica Disuelta , Nitrógeno , ARN Ribosómico 16S/genética , Microbiota/genética
4.
Wetlands (Wilmington) ; 43(8): 105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38037553

RESUMEN

Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions. Supplementary Information: The online version contains supplementary material available at 10.1007/s13157-023-01722-2.

5.
Nat Commun ; 14(1): 8196, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081846

RESUMEN

Mangroves and saltmarshes are biogeochemical hotspots storing carbon in sediments and in the ocean following lateral carbon export (outwelling). Coastal seawater pH is modified by both uptake of anthropogenic carbon dioxide and natural biogeochemical processes, e.g., wetland inputs. Here, we investigate how mangroves and saltmarshes influence coastal carbonate chemistry and quantify the contribution of alkalinity and dissolved inorganic carbon (DIC) outwelling to blue carbon budgets. Observations from 45 mangroves and 16 saltmarshes worldwide revealed that >70% of intertidal wetlands export more DIC than alkalinity, potentially decreasing the pH of coastal waters. Porewater-derived DIC outwelling (81 ± 47 mmol m-2 d-1 in mangroves and 57 ± 104 mmol m-2 d-1 in saltmarshes) was the major term in blue carbon budgets. However, substantial amounts of fixed carbon remain unaccounted for. Concurrently, alkalinity outwelling was similar or higher than sediment carbon burial and is therefore a significant but often overlooked carbon sequestration mechanism.

6.
Environ Sci Technol ; 57(41): 15627-15634, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37805932

RESUMEN

Rivers are often assumed to be the main source of nutrients triggering eutrophication in the Great Barrier Reef (GBR). However, existing nutrient budgets suggest a major missing source of nitrogen and phosphorus sustaining primary production. Here, we used radium isotopes to resolve submarine groundwater discharge (SGD)-derived, shelf-scale nutrient inputs to the GBR. The total SGD was ∼10-15 times greater than average river inputs, with nearshore groundwater discharge accounting for ∼30% of this. Total SGD accounted for >30% of all known dissolved inorganic N and >60% of inorganic P inputs and exceeded regional river inputs. However, SGD was only a small proportion of the nutrients necessary to sustain primary productivity, suggesting that internal recycling processes still dominate the nutrient budget. With millions of dollars spent managing surface water nutrient inputs to reef systems globally, we argue for a shift in the focus of management to safeguard reefs from the impacts of excess nutrients.


Asunto(s)
Agua Subterránea , Ríos , Monitoreo del Ambiente , Eutrofización , Nutrientes
7.
Sensors (Basel) ; 22(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36433609

RESUMEN

High equipment cost is a significant entry barrier to research for small organizations in developing solutions to air pollution problems. Low-cost electrochemical sensors show sensitivity at parts-per-billion by volume mixing ratios but are subject to variation due to changing environmental conditions, in particular temperature. In this study, we demonstrate a low-cost Internet of Things (IoT)-based sensor system for nitric oxide analysis. The sensor system used a four-electrode electrochemical sensor exposed to a series of isothermal/isohume conditions. When deployed under these conditions, stable baseline responses were achieved, in contrast to ambient air conditions where temperature and humidity conditions may be variable. The interrelationship between working and auxiliary electrodes was linear within an environmental envelope of 20-40 °C and 30-80% relative humidity, with correlation coefficients from 0.9980 to 0.9999 when measured under isothermal/isohume conditions. These data enabled the determination of surface functions that describe the working to auxiliary electrode offsets and calibration curve gradients and intercepts. The linear and reproducible nature of individual calibration curves for stepwise nitric oxide (NO) additions under isothermal/isohume environments suggests the suitability of these sensors for applications aside from their role in air quality monitoring. Such applications would include nitric oxide kinetic studies for atmospheric applications or measurement of the potential biocatalytic activity of nitric oxide consuming enzymes in biocatalytic coatings, both of which currently employ high-capital-cost chemiluminescence detectors.


Asunto(s)
Contaminación del Aire , Óxido Nítrico , Humedad , Temperatura , Óxido Nítrico/análisis , Cinética , Contaminación del Aire/análisis
8.
Front Plant Sci ; 13: 822136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574083

RESUMEN

Between late 2015 and early 2016, more than 7,000 ha of mangrove forest died along the coastline of the Gulf of Carpentaria, in northern Australia. This massive die-off was preceded by a strong 2015/2016 El Niño event, resulting in lower precipitation, a drop in sea level and higher than average temperatures in northern Australia. In this study, we investigated the role of hydraulic failure in the mortality and recovery of the dominant species, Avicennia marina, 2 years after the mortality event. We measured predawn water potential (Ψpd) and percent loss of stem hydraulic conductivity (PLC) in surviving individuals across a gradient of impact. We also assessed the vulnerability to drought-induced embolism (Ψ50) for the species. Areas with severe canopy dieback had higher native PLC (39%) than minimally impacted areas (6%), suggesting that hydraulic recovery was ongoing. The high resistance of A. marina to water-stress-induced embolism (Ψ50 = -9.6 MPa), indicates that severe water stress (Ψpd < -10 MPa) would have been required to cause mortality in this species. Our data indicate that the natural gradient of water-stress enhanced the impact of El Niño, leading to hydraulic failure and mortality in A. marina growing on severely impacted (SI) zones. It is likely that lowered sea levels and less frequent inundation by seawater, combined with lower inputs of fresh water, high evaporative demand and high temperatures, led to the development of hyper-salinity and extreme water stress during the 2015/16 summer.

9.
Ecol Appl ; 32(5): e2620, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35389535

RESUMEN

Coastal wetland restoration is an important activity to achieve greenhouse gas (GHG) reduction targets, improve water quality, and reach the Sustainable Development Goals. However, many uncertainties remain in connection with achieving, measuring, and reporting success from coastal wetland restoration. We measured levels of carbon (C) abatement and nitrogen (N) removal potential of restored coastal wetlands in subtropical Queensland, Australia. The site was originally a supratidal forest composed of Melaleuca spp. that was cleared and drained in the 1990s for sugarcane production. In 2010, tidal inundation was reinstated, and a mosaic of coastal vegetation (saltmarshes, mangroves, and supratidal forests) emerged. We measured soil GHG fluxes (CH4 , N2 O, CO2 ) and sequestration of organic C in the trees and soil to estimate the net C abatement associated with the reference, converted, and restored sites. To assess the influence of restoration on water quality improvement, we measured denitrification and soil N accumulation. We calculated C abatement of 18.5 Mg CO2-eq ha-1 year-1 when sugarcane land transitioned to supratidal forests, 11.0 Mg CO2-eq ha-1 year-1 when the land transitioned to mangroves, and 6.2 Mg CO2-eq ha-1 year-1 when the land transitioned to saltmarshes. The C abatement was due to tree growth, soil accumulation, and reduced N2 O emissions due to the cessation of fertilization. Carbon abatement was still positive, even accounting for CH4 emissions, which increased in the wetlands due to flooding and N2 O production due to enhanced levels of denitrification. Coastal wetland restoration in this subtropical setting effectively reduces CO2 emissions while providing additional cobenefits, notably water quality improvement.


Asunto(s)
Gases de Efecto Invernadero , Humedales , Carbono , Dióxido de Carbono/análisis , Cambio Climático , Metano/análisis , Óxido Nitroso/análisis , Suelo , Calidad del Agua
10.
Water Res ; 218: 118510, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35489146

RESUMEN

Increased frequency and intensity of drought, wildfires and flooding due to climate change has major implications for river water quality, yet there are limited high-temporal resolution data capturing the combined transient impacts of these extreme events at large catchment scales. We present flow-stratified water quality data from a large coastal catchment (Macleay River, Australia) spanning severe drought and extensive fires followed by flooding. We examine concentrations (C), discharge (Q) and flux of suspended sediment, major ions, dissolved organic carbon (DOC) and key nutrients (NO3 and PO4), with a focus on the critical first-flush period after the fires. Highly elevated suspended sediment (∼5500 mg L-1; >100x median pre-fire levels) during the initial post-fire period reflected enhanced erosion from fire-impacted, high-relief landscapes, with peak monthly suspended sediment loads of ∼1.1-3.7 t ha-1. The greatest sensitivity to erosion was during initial flow events following fire, highlighting the compounding effect of sequential extreme events on sediment transport. Maximum solute concentrations typically occurred during the first hydrograph peak post-fire with significantly (P = 0.01) elevated major ions following the order of K>Ca>SO4>HCO3≈Mg>Cl>Na, broadly reflecting the composition of ash materials. Distorted CQ relationships for major ions, DOC and nutrients indicated mobilisation behaviour and enhanced surface runoff during initial hydrograph peaks post-fire, with mean concentrations and CQ relationships progressively shifting to those approximating pre-fire within ∼3-12 months. Elevated DOC (∼7x; P = 0.01) displays distinct changes in fluorescence excitation-emission matrix spectral characteristics, attributable to both fire and drought. Both NO3N (160 µM) and PO4 (7.5 µM) were significantly elevated after the fires (∼15-22x; P = 0.01), with maximum monthly loads of 0.82 and 0.14 kg ha-1 respectively. Fast biogeochemical cycling of dissolved inorganic nitrogen (DIN) species occurred during initial flow events following fire, with NH4N initially dominant (>80% of DIN) and exceeding ecosystem guideline threshold values (>100 µM NH4N), followed by rapid (∼1 week) nitrification. The extreme dynamism and transience of water quality parameters highlights the critical importance of high-frequency sampling to adequately capture the compound impacts drought, fires and floods on aquatic systems.


Asunto(s)
Ríos , Calidad del Agua , Sequías , Ecosistema , Inundaciones , Nitrógeno
11.
Water Res ; 204: 117624, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34500180

RESUMEN

Rivers and streams play a central role in global carbon budget, but our knowledge is limited on the magnitude and extent of urbanization influence on riverine methane (CH4) dynamics. In this study, we investigated dissolved CH4 (dCH4) concentration and CH4 diffusive fluxes in 27 river segments of two 4th-order and three 3rd-order tributary rivers to the Yangtze River in China, which drained land areas with varied urbanization intensities. We found that urban development was the key factor responsible for high fluvial dCH4 concentration and diffusive flux, exceeding the influence of agricultural farming, and these headwater rivers were over-saturated in CH4 with respect to atmospheric equilibrium. dCH4 concentration (3546 ± 6770 nmol L-1) in the river segments draining higher urban area (20% ≤ urban land proportion ≤ 46%) was 5-6 times higher than those (615 ± 627 nmol L-1 and 764 ± 708 nmol L-1) in the river segments draining less urban area (0.1% ≤ urban land proportion < 2% and 2 ≤ urban land proportion < 20%). River segments draining higher urban area also acted as important sources of CH4 to the atmosphere (8.93 ± 14.29 mmol m-2 d-1). Total nitrogen (TN) concentration in river water showed the best prediction capacity when compared to other water parameters. Based on urban land use grouping, nutrient elements could predict dCH4 well in rivers draining higher urban areas (urban ≥ 2%), which also reflected the lateral input of pollutants (TN, ammonia nitrogen, and total phosphorus). River bottom sediment fraction contributed to trapping organic matter and nutrients as well as to oxic and anoxic conditions, thereby determining reach-scale spatial patterns of dCH4 concentration. These findings highlight that combining distal geomorphic and hydrologic drivers can be effective in determining the relationship between riverine CH4 and the proximal controls (e.g., nutrients, dissolved oxygen, dissolved organic carbon), as well as in identifying their key drivers. Being rapid urbanization a common feature of catchments worldwide, our results suggest riverine CH4 emissions will increase into the future.


Asunto(s)
Ríos , Urbanización , Difusión , Hidrología , Remodelación Urbana
12.
Nat Commun ; 12(1): 2127, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837213

RESUMEN

Tree stems are an important and unconstrained source of methane, yet it is uncertain whether internal microbial controls (i.e. methanotrophy) within tree bark may reduce methane emissions. Here we demonstrate that unique microbial communities dominated by methane-oxidising bacteria (MOB) dwell within bark of Melaleuca quinquenervia, a common, invasive and globally distributed lowland species. In laboratory incubations, methane-inoculated M. quinquenervia bark mediated methane consumption (up to 96.3 µmol m-2 bark d-1) and reveal distinct isotopic δ13C-CH4 enrichment characteristic of MOB. Molecular analysis indicates unique microbial communities reside within the bark, with MOB primarily from the genus Methylomonas comprising up to 25 % of the total microbial community. Methanotroph abundance was linearly correlated to methane uptake rates (R2 = 0.76, p = 0.006). Finally, field-based methane oxidation inhibition experiments demonstrate that bark-dwelling MOB reduce methane emissions by 36 ± 5 %. These multiple complementary lines of evidence indicate that bark-dwelling MOB represent a potentially significant methane sink, and an important frontier for further research.


Asunto(s)
Ciclo del Carbono , Melaleuca/metabolismo , Metano/metabolismo , Methylococcaceae/metabolismo , Microbiota/fisiología , Melaleuca/microbiología , Oxidación-Reducción , Corteza de la Planta/metabolismo , Corteza de la Planta/microbiología , Árboles/metabolismo , Árboles/microbiología
13.
Sci Total Environ ; 777: 146124, 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-33689890

RESUMEN

The small-scale spatial variability in dissolved carbon dioxide (CO2) and water-air CO2 flux dynamics were investigated within first-order catchments of the upper Blue Mountains Plateau (New South Wales, Australia). Water samples were collected at 81 locations during winter and summer over two consecutive years across seven aquatic ecosystem types: wetland, impoundment, lake, tributary stream, mainstem, escarpment complex, and urban-aquatic interface. Dissolved [CO2] ranged from 15 to 880 µM (94 to 4760%Sat), and dissolved [O2] from 0 to 350 µM (0 to 101%Sat). CO2 supersaturation was typically highest in wetlands and vegetated impoundments of the upper plateau, and decreased downstream approaching atmospheric equilibrium at the escarpment waterfalls. Gas transfer velocities ranged from 0.18 m d-1 in lentic waters to 292 m d-1 at the bottom of waterfalls due to bubble-mediated transfer. The first- and second-order streams represented only 4.8% of the total open water area yet contributed to 61% of the total water-air CO2 outgassing. The lake, escarpment and mainstem group systems had narrow diel and seasonal CO2 concentration variability, while wetlands and vegetated impoundments had the widest ranges. Our high resolution spatio-temporal sampling was essential to identifying CO2 outgassing hotspots in these geomorphically diverse catchments. Overall, >95% of excess dissolved CO2 traversing the upper Blue Mountains Plateau was outgassed to the atmosphere.

14.
New Phytol ; 230(6): 2200-2212, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33715152

RESUMEN

Knowledge regarding mechanisms moderating methane (CH4 ) sink/source behaviour along the soil-tree stem-atmosphere continuum remains incomplete. Here, we applied stable isotope analysis (δ13 C-CH4 ) to gain insights into axial CH4 transport and oxidation in two globally distributed subtropical lowland species (Melaleuca quinquenervia and Casuarina glauca). We found consistent trends in CH4 flux (decreasing with height) and δ13 C-CH4 enrichment (increasing with height) in relation to stem height from ground. The average lower tree stem δ13 C-CH4 (0-40 cm) of Melaleuca and Casuarina (-53.96‰ and -65.89‰) were similar to adjacent flooded soil CH4 ebullition (-52.87‰ and -62.98‰), suggesting that stem CH4 is derived mainly by soil sources. Upper stems (81-200 cm) displayed distinct δ13 C-CH4 enrichment (Melaleuca -44.6‰ and Casuarina -46.5‰, respectively). Coupled 3D-photogrammetry with novel 3D-stem measurements revealed distinct hotspots of CH4 flux and isotopic fractionation on Melaleuca, which were likely due to bark anomalies in which preferential pathways of gas efflux were enhanced. Diel experiments revealed greater δ13 C-CH4 enrichment and higher oxidation rates in the afternoon, compared with the morning. Overall, we estimated that c. 33% of the methane was oxidised between lower and upper stems during axial transport, therefore potentially representing a globally significant, yet previously unaccounted for, methane sink.


Asunto(s)
Metano , Árboles , Atmósfera , Bosques , Suelo
15.
Sci Total Environ ; 753: 142010, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32890880

RESUMEN

Nutrient and pesticide pollution are among the major threats to groundwater quality in agriculturally impacted aquifers. Understanding their legacy effects and drivers are important to protect aquifers from exposures to contamination. However, the complexities of groundwater flowpaths make it difficult to predict the time-scales of groundwater flow and contaminant transport. To determine these controls of groundwater nutrient and pesticides in an aquifer system underlying an intensive agricultural area in the Great Barrier Reef catchment, Australia, we sampled tritium (3H) to estimate groundwater-age, nutrient and pesticide concentrations to investigate groundwater contamination, and nitrogen (ẟ15N-NO3-) and oxygen (ẟ18O-NO3-) isotopes to determine groundwater nitrate dynamics. We, then, constructed high-resolution 3D geological and groundwater flow models of the aquifer system to determine the role of the geologic heterogeneity on the observed nutrient and pesticide concentrations. Groundwater 3H derived ages, and nutrient and pesticide concentrations did not follow distinct spatial trends. ẟ15N-NO3- and ẟ18O-NO3- values indicated that nitrification and denitrification processes influenced nitrate dynamics in the aquifer system; however, they were not solely able to explain the entire 3D variability. The 3D geologic modelling identified possible preferential flowpaths and perched systems, which helped to explain the observed groundwater-age, nutrient and pesticide variabilities. Old-groundwater (~100-years) was found in shallow depths (<15 m) where perched systems were identified. In areas with preferential flowpaths, young-groundwater (⁓1-year) with significant nitrate (~12 mg-N/L) and pesticides (up to 315 ng/L) concentrations were detected at deeper depths (>25 m), below perched and locally confined systems. Downward increasing groundwater-age, and decreasing nutrient and pesticide concentrations were detected in the unconfined aquifer, while old-groundwater (~160-years) and lower nitrate (<3 mg-N/L) and pesticides (<2 ng/L) concentrations were detected in the confined systems. This study demonstrates the importance of understanding both the geology and the hydrogeology of an area before deploying monitoring studies and/or making conclusions from tritium, nutrient and pesticide data alone.

16.
PLoS One ; 15(11): e0242339, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33232349

RESUMEN

In coastal aquatic ecosystems, prokaryotic communities play an important role in regulating the cycling of nutrients and greenhouse gases. In the coastal zone, estuaries are complex and delicately balanced systems containing a multitude of specific ecological niches for resident microbes. Anthropogenic influences (i.e. urban, industrial and agricultural land uses) along the estuarine continuum can invoke physical and biochemical changes that impact these niches. In this study, we investigate the relative abundance of methanogenic archaea and other prokaryotic communities, distributed along a land use gradient in the subtropical Burnett River Estuary, situated within the Great Barrier Reef catchment, Australia. Microbiological assemblages were compared to physicochemical, nutrient and greenhouse gas distributions in both pore and surface water. Pore water samples from within the most urbanised site showed a high relative abundance of methanogenic Euryarchaeota (7.8% of all detected prokaryotes), which coincided with elevated methane concentrations in the water column, ranging from 0.51 to 0.68 µM at the urban and sewage treatment plant (STP) sites, respectively. These sites also featured elevated dissolved organic carbon (DOC) concentrations (0.66 to 1.16 mM), potentially fuelling methanogenesis. At the upstream freshwater site, both methane and DOC concentrations were considerably higher (2.68 µM and 1.8 mM respectively) than at the estuarine sites (0.02 to 0.66 µM and 0.39 to 1.16 mM respectively) and corresponded to the highest relative abundance of methanotrophic bacteria. The proportion of sulfate reducing bacteria in the prokaryotic community was elevated within the urban and STP sites (relative abundances of 8.0%- 10.5%), consistent with electron acceptors with higher redox potentials (e.g. O2, NO3-) being scarce. Overall, this study showed that ecological niches in anthropogenically altered environments appear to give an advantage to specialized prokaryotes invoking a potential change in the thermodynamic landscape of the ecosystem and in turn facilitating the generation of methane-a potent greenhouse gas.


Asunto(s)
Archaea/aislamiento & purificación , Estuarios , Metano/metabolismo , Methanococcales/aislamiento & purificación , Methylocystaceae/aislamiento & purificación , Microbiota , Aguas Salinas , Microbiología del Agua , Agricultura , Compuestos de Amonio/metabolismo , Crianza de Animales Domésticos , Archaea/metabolismo , Carbono/metabolismo , Ecosistema , Agua Dulce/análisis , Agua Dulce/microbiología , Gases de Efecto Invernadero/análisis , Vivienda , Industrias , Methanococcales/metabolismo , Methylocystaceae/metabolismo , Nitratos/metabolismo , Oxidación-Reducción , Queensland , Aguas Salinas/análisis , Salinidad , Sulfatos/metabolismo , Temperatura , Termodinámica , Purificación del Agua
17.
Glob Chang Biol ; 26(10): 5899-5913, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32686242

RESUMEN

The magnitude of the terrestrial carbon (C) sink may be overestimated globally due to the difficulty of accounting for all C losses across heterogeneous landscapes. More complete assessments of net landscape C balances (NLCB) are needed that integrate both emissions by fire and transfer to aquatic systems, two key loss pathways of terrestrial C. These pathways can be particularly significant in the wet-dry tropics, where fire plays a fundamental part in ecosystems and where intense rainfall and seasonal flooding can result in considerable aquatic C export (ΣFaq ). Here, we determined the NLCB of a lowland catchment (~140 km2 ) in tropical Australia over 2 years by evaluating net terrestrial productivity (NEP), fire-related C emissions and ΣFaq (comprising both downstream transport and gaseous evasion) for the two main landscape components, that is, savanna woodland and seasonal wetlands. We found that the catchment was a large C sink (NLCB 334 Mg C km-2  year-1 ), and that savanna and wetland areas contributed 84% and 16% to this sink, respectively. Annually, fire emissions (-56 Mg C km-2  year-1 ) and ΣFaq (-28 Mg C km-2  year-1 ) reduced NEP by 13% and 7%, respectively. Savanna burning shifted the catchment to a net C source for several months during the dry season, while ΣFaq significantly offset NEP during the wet season, with a disproportionate contribution by single major monsoonal events-up to 39% of annual ΣFaq was exported in one event. We hypothesize that wetter and hotter conditions in the wet-dry tropics in the future will increase ΣFaq and fire emissions, potentially further reducing the current C sink in the region. More long-term studies are needed to upscale this first NLCB estimate to less productive, yet hydrologically dynamic regions of the wet-dry tropics where our result indicating a significant C sink may not hold.


Asunto(s)
Carbono , Ecosistema , Australia , Carbono/análisis , Dióxido de Carbono/análisis , Pradera
18.
Nat Commun ; 10(1): 4313, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31575872

RESUMEN

Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1-3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12-21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions.


Asunto(s)
Carbono/análisis , Cambio Climático , Conservación de los Recursos Naturales , Humedales , Australia , Ecosistema
19.
New Phytol ; 224(1): 146-154, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31211874

RESUMEN

Growing evidence indicates that tree-stem methane (CH4 ) emissions may be an important and unaccounted-for component of local, regional and global carbon (C) budgets. Studies to date have focused on upland and freshwater swamp-forests; however, no data on tree-stem fluxes from estuarine species currently exist. Here we provide the first-ever mangrove tree-stem CH4 flux measurements from  >50 trees (n = 230 measurements), in both standing dead and living forest, from a region suffering a recent large-scale climate-driven dieback event (Gulf of Carpentaria, Australia). Average CH4 emissions from standing dead mangrove tree-stems was 249.2 ± 41.0 µmol m-2  d-1 and was eight-fold higher than from living mangrove tree-stems (37.5 ± 5.8 µmol m-2  d-1 ). The average CH4 flux from tree-stem bases (c. 10 cm aboveground) was 1071.1 ± 210.4 and 96.8 ± 27.7 µmol m-2  d-1 from dead and living stands respectively. Sediment CH4 fluxes and redox potentials did not differ significantly between living and dead stands. Our results suggest both dead and living tree-stems act as CH4 conduits to the atmosphere, bypassing potential sedimentary oxidation processes. Although large uncertainties exist when upscaling data from small-scale temporal measurements, we estimated that dead mangrove tree-stem emissions may account for c. 26% of the net ecosystem CH4 flux.


Asunto(s)
Avicennia/metabolismo , Carbono/metabolismo , Bosques , Metano/metabolismo , Tallos de la Planta/metabolismo , Geografía , Sedimentos Geológicos/química , Oxidación-Reducción , Queensland , Volatilización
20.
Environ Sci Technol ; 53(11): 6420-6426, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31117543

RESUMEN

Atmospheric concentrations of methane have increased ∼2.4 fold since the industrial revolution with wetlands and inland waters representing the largest source of methane to the atmosphere. Substantial uncertainties remain in global methane budgets, due in part to the lack of adequate techniques and detailed measurements to assess ebullition in aquatic environments. Here, we present details of a low cost (∼$120 US per unit) ebullition sensor that autonomously logs both volumetric ebullition rate and methane concentrations. The sensor combines a traditional funnel bubble trap with an Arduino logger, a pressure sensor, thermal conductivity methane sensor, and a solenoid valve. Powered by three AA batteries, the sensor can measure autonomously for three months when programmed for a sampling frequency of 30 min. For field testing, four sensors were deployed for six weeks in a small lake. While ebullition was spatially and temporally variable, a distinct diurnal trend was observed with the highest rates from mid-morning to early afternoon. Ebullition rates were similar for all four sensors when integrated over the sampling period. The widespread deployment of low cost automated ebullition sensors such as the iAMES described here will help constrain one of the largest uncertainties in the global methane budget.


Asunto(s)
Atmósfera , Metano , Lagos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...